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Abstract

A new method for predicating all instructions wholly within the microarchitecture of a machine is
presented. This new method builds on the work of a previous microarchitectural predication scheme.
Predication within the microarchicture can be applied to any existing or future instruction set architecture
since no elements of the predication are visible within the ISA (that which a programmer would see). This
new predication method differs from the previous method in that the addresses of the predicates and the
predicate values are entirely determined at execution time (after instruction dispatch) rather than before
dispatch as was done previously. This provides for a less complex hardware implementation than was
previously possible.

1 Introduction

Explicit architectural predication has been of particular interest for several years now. Explicit architectural
predication is implemented through architecturally visible predicate registers as part of an Instruction Set
Architecture (ISA). Since these predicate registers are part of the ISA definition, this type of predication can
be thought of as a hardware approach to predication as opposed to a purely software approach when no ISA
predicate registers are available. Since the predicate registers are visibly part of the ISA of the machine,
the scheme can be referred to as the wisible explicit predication. An example of a popular ISA that uses
visible explicit hardware predication is the iA64 ISA family of machines. With visible explicit predication, the
compiler schedules instructions (usually comparisons of some sort) to set the predicate registers while other
instructions are scheduled to be dependent on those predicate registers as part of their execution. In effect,
instructions that are dependent on a predicate register have the predicate register as an additional source
operand to the instruction. Of course, the goal is to eliminate conditional branch instructions and replace
them with the use of instructions that both set (define) the predicate registers and instructions that use those
predicate registers.

One hardware alternative to visible explicit predication is to not have any predicate registers defined in
the ISA to start with while still providing predication of instructions at the microarchitectural level of the
machine. Since there are no additional architectural registers that serve explicitly as predicates for instructions,
conditional branch instruction cannot be removed from the instructions scheduled by the compiler. However,
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some or all instructions can still be predicated at the microarchitectural level. This sort of predication strategy
can be thought of as being invisible (since there are no predicate registers in the ISA) explicit predication or
hidden explicit predication. One obvious advantage to this predication strategy is that it can be applied to
existing ISAs that never planned on using any predication of any sort at all when they were designed.

Several hidden explicit predication schemes are possible. The first such scheme known to this author was
described by Uht et al [1]. This scheme allows for all instructions in flight within a machine to be predicated
regardless of the number and variation of control-flow-change that may be present. This is accomplished by
calculating control-flow dependencies for predicates associated with each instruction and the initial values
of those predicates at instruction dispatch time (when decoded instructions are transfered from the i-fetch
buffers to instruction issue slots). This scheme requires the presence of a Branch Tracking Buffer that is used
to correlate branch target instructions with the original branch instructions that lead to them. This hardware
component has not been implemented in less than roughly O(n?) time or space at the present due to the need
to search the entire table simultaneously for all of the instructions to be dispatched (transfered to issue slots)
in any given clock period.

The new scheme that I propose is a natural extension of the one proposed by Uht [1]. In the scheme
by Uht, the idea of an active station was introduced as a mechanism to hold the related state associated
with a dispatched instruction until it gets retired. An Active Station (AS) is essentially the combination
of an instruction issue slot and a reorder buffer entry of many current superscalar machines. This combined
arrangement of hardware allows for the repeated executions of the dispatched instruction until it is determined
that it should be retired, either committed or squashed as the case may be. The idea of the AS is a useful
one for maintaining state associated with an instruction that has been dispatched. Each AS will maintain
a special bit of state (in addition to other state) termed an execution predicate. As execution predicate is
that which determines whether the current instruction’s computed output values should become a part of the
committed program state or not. If the instruction’s execution predicate is TRUE, then the instruction is
said to be execution-enabled. If the instruction’s execution predicate is FALSE, then the instruction is said
to be execution-disabled. If the instruction was execution-enabled at retirement, then it is committed. If the
instruction was execution-disabled at retirement, then it squashed. Note that the term ezxecution predicate is
somewhat misleading in that an instruction is allowed to execute even if it is currently disabled. In this case,
the hardware must hold any instruction execution results tentatively since they cannot become a part of the
program committed state if the present instruction is retired while still in the disabled state. Of course, if the
instruction becomes enabled, any current instruction execution output values may still be valid and may be
used as long as no new inputs to the instruction changed since the last execution. Whether instructions are
allowed to execute while they are disabled is a machine implementation policy and is not of further interest
to the work presented here. In this present work, I have adopted the notion of the active station as a means
to describe the state associated with an instruction that has been dispatched.

In contrast to the scheme by Uht, rather than computing any predicate dependencies (the predicate ad-
dresses) and their initial predicate values at instruction dispatch time (the time that instructions are dispatched
to the ASes in the execution window), my proposed scheme would simply dispatch the instructions to issue
slots without any calculated predicate dependency addresses. Control dependencies, in the form of execution
predicates, are determined as instructions execute in a similar way as to how register and memory dependencies
are determined at execution time.

1.1 Problems with the use of a predicate tracking buffer

The most significant problem with the previous scheme is that a centralized predicate tracking buffer needs to
be maintained. Although this is not a problem at all for small and more conventional microarchitectures, it is
more of a problem with a distributed microarchitecture like that in Levo. In Levo, all instructions in a column
generally need to be predicated at once in a single clock period. This has proven to be very difficult to do with
the centralized predicate tracking buffer. Each new instruction needs to associatively search the predicate
tracking buffer simultaneously within a single clock. This leads to order h? connectivity within the tracking
buffer, where h is the height of a column of ASes in the microarchitecture. A further complication with a
centralized tracking buffer is that predication of later instructions in a column depend on the predication and
buffer updates from earlier instructions in the column. These various problems and the hints acquired from
the handling of register and memory dependencies has led to the development of an execution-time scheme to



predicate instructions.

1.2 Objectives of the new scheme

The new predication scheme needs to not only avoid the use of a centralized microarchitectural structure (the
predicate tracking buffer for example) but also needs to satisfy other requirements that are consistent with
a flexible instruction dispatch policy. A scheme needs to be independent of the distance (in instructions)
between a conditional branch and the target of that conditional branch. When instructions are dispatched
into the execution window following the static program order, the distance between a conditional branch and
its target will equal the difference in their assigned AS time-tags. However, when instructions are dispatched
into the execution window following the taken output path of a conditional branch, the distance in dispatched
instructions from the branch to its target may be zero. Other dispatch policies (not discussed further here)
could possibly provide some pseudo random distance (in instructions) between the branch instruction and its
target. Therefor a predication scheme needs to be insensitive to the distance, in ASes, between a branch and its
target. Unlike the previous scheme, no "null-predicate” or predicate-only active stations need be allocated and
managed at instruction dispatch time (or otherwise) for the overflow of branch targets to a single instruction.
Finally, the scheme needs to be insensitive to the real-time ordering of predication forwarding transactions.
This is necessary as the forwarding bus network may allow transactions to slip past each other as they are
forwarded.

1.3 Overview of the scheme

Instructions are fetched and decoded normally. When instructions are ready to be dispatched into the execution
window, conditional branches are predicted using branch predictors (one per row for example). The decoded
instruction, its instruction address, along with the predictions for conditional branches are dispatched to
ASes when some become available. No assignment of predicate addresses occurs at this time as they will
be discovered dynamically as the instructions begin execution. Instructions following conditional branches
may be dispatched to start out in an enabled or disabled state (predicated to execute or not) based on the
prediction of the conditional branch domain that they are in, but this is not necessary for correct operation.
In effect, a random execution predicate can be initially assigned to instructions, as their execution predicate
values will likely change anyway as execution proceeds. Instructions that are dispatched following the taken
output path of a conditional branch are marked as such. That is, they are marked with an indication that they
are the first instruction following the taken output path of a conditional branch. Marking those instructions
that follow the taken output of a conditional branch serves to prevent those instructions from inheriting the
fall-through like control flow from the previous statically ordered instructions that were dispatched just before
them (the conditional branch itself and its preceding instructions).

As instructions execute, they will forward predication related information to future program ordered in-
structions. This is the same in nature as how updated operands are forwarded for registers or memory values.
Predication related information is a little bit different and is described in detail later in the document. Only
relay forwarding is used for the forwarding of predicate information as opposed to something like nullify for-
warding. Active stations will snarf predicate forwards similarly to the way that they snarf operand update
forwards, by using the time-tag of the forwarding AS in the snarfing logic.

Overflow of branch targets to a single instruction can still occur but these are handled dynamically as
encountered. Since instructions were not predicated at instruction dispatch time, the number of control
flow paths leading to a single instruction is not known precisely at any given time but is, rather, handled
dynamically as the other aspects of the scheme are.

2 Active Station predicate state

State is maintained in each active station to manage the handling of instruction flow predicates. This is similar
to the state already maintained within ASes for the management of register and memory operands. The state
needed for predicate tracking is a little bit different but makes use of some common principles already used in
the handling of register and memory operands.



Active Station Predication State
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Figure 1: Active Station Predication State Information. The state within each active station needed for the
predication scheme is shown. The branch target predicate table is shown with four entries. Valid bits (V), the
region predicate (Pr), an overflow bit (OV), and time-tag values (TT) are indicated in the state registers.

Four types of state are maintained in each AS. Each type basically consists of one or more registers, either
alone or organized into a table structure. These four types of state are :

e region predicate

e branch target predicate table

e branch target overflow bit

e branch target invalidation time-tag value

The first three types of state are mandatory. The fourth is actually optional but will be discussed along with
the other three. All of this state is discussed in more detail in the following sections. Figure 1 shows the
state registers within an active station that are maintained as part of the predication strategy. Also shown
in Figure 1 are the instruction address of the instruction currently loaded in the AS as well as the time-tag
value of the AS itself. These two additional items are used in the snooping logic and were loaded into the AS
when it was dispatched an instruction. The forwarding transactions that give rise to changes in this state are
described after a discussion of the active station predication related state.

2.1 Region Predicate State

The first type of state maintained for predicate tracking is that associated with the region predicate. This
region predicate is identical to that with the same name described by Uht et al [1]. The state associated with
the region predicate has three parts and consists of :

e 3 valid bit
e a source time-tag value
e a predicate value

The valid bit is set for all instructions except those instructions that were dispatched into the execution window
following the taken output path of a conditional branch. For these latter instructions, they never associate (nor
should they) with the running regional predicate from the instructions dispatched into the execution window
sequentially before there. For this reason, the valid bit is turned off when they are dispatched to ASes. It is
possible for all other instructions besides those dispatched following the target of a branch to be enabled for
execution by virtue of them being located in a region that might be enabled. All of these instructions (the
greater majority) are therefor dispatched to ASes with the valid bit set. Currently, there is no changing of the
valid bit after instruction dispatch. The source time-tag field of the region predicate state is that of the AS
that last forwarded a region predicate transaction (more of transactions is described later). This is identical



to the last time-tag value maintained for input register operands of the AS. The snarfing condition for the
region predicate is identical as that for register operands and occurs when the source AS time-tag of a region
predicate transaction is less that the current AS’s time-tag but greater or equal to the last snarfed value. The
last bit of state is the value of the region predicate itself. A zero value means that the region is disabled, a
one value means that it is enabled.

2.2 Branch Target Predicate State

The second major state maintained by each AS for predication is a table of entries where each represents the
holding of a branch target predicate. The table consists of a number of fixed sized entries and each entry has
two parts. The idea of a branch target predicate is a virtual one since its presence and value is indicated by
a valid table entry. The parts of state for each entry consists of :

e a valid bit
e a source time-tag value

The valid bit indicates that the entry is used and that the associated time-tag value is valid. Any valid
entry indicates that the current instruction is the possible target of a previous conditional branch and that
the current instruction is therefor currently predicated to execute (is enabled). This further means that the
output region predicate from this instruction should be set to TRUE. The exact calculation of the instruction
execution predicate and its output predicate is presented later. It should be further noted that the time-tag
value in a branch target predicate is effectively the address of the predicate. The presence of a valid entry in
the table (valid bit is set) means that a branch target predicate has been previously received by this AS. The
predicate itself (if present in one of these state table entries) is implicitly TRUE (and therefor enabling for
the associated instruction) and can be thought of being sourced from the conditional branch that originated
it. The time-tag value is the address of the AS holding that originating conditional branch. Although no
actual bit is allocated to hold the branch target predicate, one can still think of having received one, with its
value being TRUE. This abstract notion of holding a branch target predicate corresponds with the cancelling
predicate described within Uht’s scheme [1] and serves the same sort of a purpose. The branch target predicate
was termed a cancelling predicate in the previous work because it served to cancel the negative (instruction
disabling) effect of a FALSE region predicate. In the present work, this same notion of a cancelling predicate
is more naturally expressed as serving as an enabling of the present instruction, regardless of the state of any
region predicates.

Any number of table entries are possible but the number should roughly correspond to the number of
conditional branches that are likely to target a single instruction on the average given the size (in main-line
ASes) of any given execution window. Program characterization can be used to pick a good value for the
number of entries. When more branch target predicates are received than there are entries for, an overflow
mechanism is invoked. Predicate-only active stations are neither assigned at dispatch time nor are they used
in the scheme. Rather, a dynamic overflow scheme is used to handle these circumstances. Invalid entries are
available for storing time-tags for new branch target matches to the current instruction.

2.3 Overflow Indication

Next, there is maintained an overflow bit for those cases when a given instruction is the target of more
conditional branches than there are branch target predicate entries in the table just described. When the
overflow bit is clear, it indicates that an overflow condition is not in effect for the current AS. If the bit is
set, it indicates that an overflow of branch target predicate matches with the current instruction address has
occurred. Since the existence of branch target predicates for the current instruction always indicates that
the current instruction is predicated to execute, no ambiguity of the predication status is manifested until all
existing branch target predicates are invalidated. The exact details of the handling of an overflow is discussed
later.



2.4 Invalidation Time-Tag State

Finally, each AS can maintain a state register that holds a time-tag value that can further govern the manage-
ment of the branch target predicate table. This time-tag value is used to prevent the snarfing of branch target
predicate broadcasts that are not applicable to the current active station. This state register will be updated
with the latest sourcing AS time-tag value that was associated with a branch target predicate invalidation
transaction. This is very analogous to holding the latest time-tag value snarfed for a register operand but it
is applied to invalidation transactions rather than the more familiar operand update transactions associated
with register and memory operations.

3 General Operation

As instructions execute they forward any significant changes in predicate information that program ordered
future (larger time-tag valued) instructions will use to determine their branch domains and whether they are
the target of one or more previous branches. Three types of predicate forwarding transactions are identified.
Each of these transactions are discussed in the following subsections. A further discussion of the operation
follows the introduction of the various transactions.

3.1 Predicate Related Transactions

Each of the three predicate related transactions are now discussed in turn.

3.1.1 Region Predicate Transaction

One type of predicate transaction is generated from non-branch instructions. This predicate transaction
type forwards a region predicate value similar to a register operand update transaction. When a non-branch
instruction forwards predicate information, it will forward only a region predicate. The following is forwarded
in this type of transaction :

e the sourcing AS time-tag value
o the region predicate value

The snooping ASes in the program ordered future will possibly snarf this predicate value according to normal
snarfing rules for the comparison of time-tags that are already used for register snarfing. Note that only those
ASes that have their valid bit set in their region predicate state structure will participate in region predicate
snooping. Snarfing ASes will update their regional predicate state to reflect the latest TT value and the new
value for the region predicate.

3.1.2 Branch Target Predicate Transaction

Another type of predicate transaction is generated by conditional branch instructions. This type of predicate
transaction forwards a region predicate value as well as a branch target predicate. More information is
contained in this type of predicate transaction as compared with the simpler region predicate transaction
already described. The fields associated with this transaction include :

e the sourcing AS time-tag value

e the branch target address

e the output region predicate value

e the output branch target predicate value

Snooping ASes, upon seeing a branch target predicate transaction, will snarf and update its region predicate
state the same as if a region predicate transaction (from a non-branch instruction) was forwarded. However
additional work is done also. The snooping AS will compare its instruction address (which it received at
instruction dispatch time) with the branch target address that is forwarded by the branch instruction. If there



is a match on the branch target address, the snooping AS will also look to see if the branch is predicated
taken. If the branch target predicate is true, then that indicates that instruction flow is currently predicted to
come through the taken path. In this circumstance, the snarfing AS will allocate a previously unused branch
target predicate state register for holding the TT value of the originating AS with the conditional branch.

3.1.3 Branch Target Invalidation Transaction

FEach branch target predicate transaction can be used by at most only one instruction located in the program
ordered future of the conditional branch that originated the transaction. A means is needed to ensure that only
one instruction (the true target of the conditional branch) makes use of a branch target predicate transaction.
More than one instruction in the program ordered future from the conditional branch may match on the
branch target address. This can occur when (for example) the target of a branch is located within a loop in
the program code. Since several instructions (for example, one from each iteration of a loop) can have the same
instruction address, some means needs to be provided to distinguish the first of these (in program ordered
time) from the remaining (subsequent) ones. This situation is handled by an AS holding the instruction that
is the target of a conditional branch. This AS may be either the actual target of the branch (the first matching
one after the conditional branch) or a subsequent instruction. In either case the same action is taken. Such
an AS will forward a special type of transaction that will invalidate the previous branch target predicate
transaction that had already been previously forwarded. This special transaction consists of the following
fields :

e the sourcing AS time-tag value
e the branch target instruction address
o the time-tag of a branch target predicate that is to be invalidated

The sourcing AS time-tag value is used in the snooping determination as is typical with other (register and
memory) transactions. The branch target address is also used to see if it matches with the instruction address
in the snooping AS. When a match is determined, a search is made in the branch target predicate table for a
matching time-tag for the AS holding the original conditional branch. This latter search can actually occur
in parallel with the branch target comparison but that is an implementation issue. If an entry is found, it
is deleted (marked as invalid) and that entry is available for reuse. Also, if an entry is found, the time-
tag state register that holds the last invalidation time-tag value, maintained within the AS, is updated to
reflect the sourcing AS’s time-tag value. This invalidation time-tag value can be used to avoid false branch
target predicate matches in the future. Once an invalidation time-tag value is acquired, future branch target
predicate transactions would need to be sourced from an AS with a time-tag value that is at least as large as the
invalidation time-tag value. This use is correctly forcing an AS to avoid accepting branch target predicates
that actually belong to the correct target of the branch. This feature is not strictly needed, as the whole
scheme will work properly without maintaining this invalidation time-tag state, but it serves to reduce some
unnecessary flipping of the enabling execution predicate for false branch target matching instructions.

3.2 Detailed Operation

Given a regional predicate (Pr), the execution predicate (Pe) of the AS, its enabling predicate, is computed
as :
Pe = Pr,input + (any branch target predicates)

Similarly, a new output region predicate (Pr) for a non-conditional branch instruction is computed by the
snarfing AS as follows :

Pr,output = Pr,input + (any branch target predicates)

If the output region predicate changes from its previous value, it is forwarded as expected. As expected, the
output predicates from branch instructions are computed according to :

Pr,output = Pe x (branch predicted not-taken)



and
Pt, output = Pe x (branch predicted taken)

The first of these is the output regional predicate (also the output predicate for the not-taken output path
from the branch). The second is the Branch Target Predicate (Pt) and is for the target of the branch. Both
output predicate values are forwarded using a Branch Target Predicate transaction as previously discussed.

The use of forwarding the branch target instruction address rather than the target time-tag value (previ-
ously proposed some time ago) is to handle the situation where the target of a branch does not lie the same
number of ASes forward in program ordered time as the branch target address might indicate. A dynamic
change in the instruction flow (instructions dispatched following the taken output path of a branch) may have
been dispatched into the execution window and this can obviously cause target instructions of a conditional
branch to lie any number of ASes into program ordered future, rendering the relative computation of a target
TT value to be of no use. Rather, by having conditional branch instructions broadcast the absolute target
instruction address, the possible target instruction can snarf on an instruction address match regardless of
how many ASes into program ordered future it may lie within the execution window.

When a branch instruction computes a change in its output branch target predicate such that it becomes
false (the branch is no longer predicated to be taken or it is no longer predicted to execute itself), it will
perform a predicate forward operation. Snooping ASes will again match on the target address but will also
search to see if that branch target predicate from the originating branch instruction was previously recorded. If
it was previously recorded, the branch target predicate address state register entry that was occupied becomes
unoccupied. This amounts to the loss of an enabling input to its execution predicate computation and its
output region predicate value. If the output predicate region value changes, this instruction will perform, in
turn, its own predicate forward operation. Of course, the target of a branch instruction can itself be a branch
instruction and this is handled in the expected straight forward manner (as in the current scheme also).

No ordering of any kind is needed for the forwarding of predicate transactions, whether it be from a non-
branch instruction or from a branch instruction. This latter feature is a critically important one because
current predicate forwarding bus mechanisms, when combined with the existing grouping of ASes into Sharing
Groups, cannot necessarily guarantee the order of predicate forward operations. The order of predicate forward
operations may be mixed up due to additional structural hazards in the machine such as the priority and queue
delay for the use of a Processing Element when one may be needed for the execution of a branch that may
require some non-trivial computation. In any event, it is certainly advantageous to not require a strict real-time
ordering of predicate forward operations.

A difficulty with the proposed scheme occurs when the target of a branch already has all of its architected
(machine configured) branch target predicate address state registers used and then a match occurs with a new
originating branch instruction that was not previously recorded in the AS. What we would like to do is to
allocate an additional predicate address state register to hold the new predicate source T'T value but this is
not possible since all of the registers are used up. Rather we can either ignore the new branch match condition
or we can replace an existing branch predicate address with the new one. In either case, the overflow bit is set
in the AS state. The replacement policy for handling overflow branch target matches is something that could
be researched further to find the policy that gives best execution performance. We have to set the overflow
bit because we need to track that an overflow occurred. This is necessary so that after all existing branch
target predicates become false, due to subsequent forward operations, and when the region predicate of the
current AS also goes false, we need to know that there is still an ambiguity about whether the current AS
is predicated to execute or not. The problem comes into play on how to resolve this ambiguity. The most
natural mechanism would require the addition of a predicate backwarding bus of some sort in order for ASes
that have reached an ambiguous state to make a request backwards. This backwards request would essentially
ask all branch instructions to resend a predicate forwarding transaction so that any branch target matches
for those branches that are predicated to execute, and to execute taken, can be be snarfed by the ambiguous
AS. At least one backwarding request would have to be made for any AS in an ambiguous state before the
ambiguous AS could be allowed to commit. Another strategy for resolving ambiguous ASes besides requiring
a backwarding bus may be to design some way to just signal the ASes holding conditional branches to initiate
branch target predicate transactions. This would also provide the necessary disambiguating transactions that
would be needed.



4 Branch Target Predicate Table Entry Replacement Policies

Some thought can now be given to the replacement policy for storing matching branch target predicate
addresses. We obviously would want to minimize the likelihood of having as AS ever reaching an ambiguous
state. The likelihood of an AS reaching an ambiguous state is already probably quite low but will always
remain non-zero if the number of configured branch target predicate address storage registers in an AS is less
than the AS window size (same as the current scheme). The likelihood of an AS reaching an ambiguous state
will only occur after both overflow occurs and when its region predicate goes false. This is somewhat less than
the probability of some number of preceding branches all predicting that they are both being executed and
are also being predicted as taken, and when all of those branches target a single AS. This may indeed be a
very small probability. Simulations can show the exact likelihoods involved with actual benchmark programs
codes. Replacement policies that have been thought of include :

e ignore the latest match and keep existing entries
e replace a branch target predicate address such that the latest time-tag values are retained
e replace a branch target predicate address such that the earliest time-tag values are retained

e maintain an age associated with a branch target predicate address (updated each clock for example) and
only replace the oldest aged entry

e maintain an age and replace the youngest aged entry
e some combination of the above

As already stated, simulations could explore which replacement policy might perform best.

5 Other Possibilities

Some other manipulations of these dynamic predicates maintained by an AS may be possible and may or
may not provide some performance advantages. Currently, region predicates are maintained dynamically by
a chain of regional predicate dependencies. State contained in an AS, to maintain this chaining, primarily
consists of a region predicate address and a region predicate value. If a target of a branch is serving as the
previous link in a region predicate chain for a future instruction and that branch target AS snarfs a branch
predicate forward operation such that its execution predicate now only depends on its own region predicate,
that branch target AS can forward information to succeeding ASes so that they can unlink the branch target
address and revert back to the region predicate address that was the original region predicate of the branch
target AS. This unlinking operation would be accomplished by the branch target AS forwarding its own region
predicate address along with its own predicate forward operation. This would be a GOTO-predicate-address
for future ASes that could be used to essentially unlink the intermediate branch target AS. The snarfing AS of
a predicate forward operation with a GOTO predicate address could then update its own predicate address to
that of the GOTO value rather than the existing value (that of the AS that was the target itself of a branch).

What would a region predicate unlink operation do to help overall operation ? It will eliminate one
indirection for those ASes that were dependent on an AS that was itself the target of a branch when that
AS’s execution predication no longer is valid through the taking of any branches. Of course, this unlinking
operation can continue backwards through many combinations of ASes that are the target of a branch. Other
unlinking operations are also possible but do not appear do be as useful as the one described so far since
they would quickly degenerate, into likely forming additional chaining links (often the same as before) as the
intermediate instructions send their own predicate updates forward. As already stated, it is not intuitive
how much performance may be gained from these additional (and increasingly esoteric) techniques but these
possibilities are mentioned for completeness.



6 Conclusions

We have presented the overview of a new predication scheme. This new scheme is performed dynamically
as instructions execute and requires no predication of instructions before they are dispatched the execution
window. The use of a centralized predication tracking buffer is entirely avoided. And finally, and importantly,
the scheme scales since it doesn’t depend on either a centralized microarchitectural resource or any buses that
need to span the whole length of the machine.
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